Numerical Integration In many dimensions . I

نویسنده

  • Charles Schwartz
چکیده

If a d-dimensional integral involves an integrand ofthe functional form F (II (x I) + f2(X2) + ... ), then one can introduce an integral transform (Fourier or Laplace or variants on those) which allows all the integrals over the coordinates XI to factor. Thus a d-dimensional integral is reduced to a one-dimensional integral over the transform variable. This is shown to be a very powerful and practical numerical approach to a number of problems of interest. Among the examples studied is the computation of the volume of phase space for an arbitrary collection of relativistic particles. One important aspect of the approach involves numerical integration along various contours in the complex plane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomaly in Numerical Integrations of the KPZ Equation and Improved Discretization

We demonstrate and explain that conventional finite difference schemes for direct numerical integration do not approximate the continuum Kardar-ParisiZhang (KPZ) equation due to microscopic roughness. The effective diffusion coefficient is found to be inconsistent with the nominal one. We propose a novel discretization in 1+1 dimensions which does not suffer from this deficiency and elucidates ...

متن کامل

Numerical Simulation of 1D Linear Telegraph Equation With Variable Coefficients Using Meshless Local Radial Point Interpolation (‎MLRPI)

In the current work, we implement the meshless local radial point interpolation (MLRPI) method to find numerical solution of one-dimensional linear telegraph equations with variable coefficients. The MLRPI method, as a meshless technique, does not require any background integration cells and all integrations are carried out locally over small quadrature domains of regular shapes, such as lines ...

متن کامل

An algorithm for QMC integration using low-discrepancy lattice sets

Many low-discrepancy sets are suitable for quasi-Monte Carlo integration. Skriganov showed that the intersections of suitable lattices with the unit cube have low discrepancy. We introduce an algorithm based on linear programming which scales any given lattice appropriately and computes its intersection with the unit cube. We compare the quality of numerical integration using these low-discrepa...

متن کامل

Evaluating the Quasi-monte Carlo Method for Discontinuous Integrands

The Monte Carlo method is an important numerical simulation tool in many applied fields such as economics, finance, statistical physics, and optimization. One of the most useful aspects of this method is in numerical integration of higher dimensions. For integrals of higher dimensions, the common numerical methods such as Simpson’s method, fail because the total number of grid points needed to ...

متن کامل

Numerical integration in many dimensions . II

A high-accuracy prescription (quadrature rule) is the set of points Xj and weights Wj such that the error E (n) is a small and rapidly decreasing function of n, the number of mesh points used. Now suppose we want to integrate a function F(X l ,x2'''''Xd) = F(x) over the d-dimensional cube. The direct product technique would be to use the rule (1) d timesi ". n2 "d L L '" L Wj, Wh ... wjdF (Xj" ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001